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ABSTRACT
Articulatory features are inherently invariant to acoustic signal
distortion and have been successfully incorporated into automatic
speech recognition (ASR) systems for normal speech. Their prac-
tical application to disordered speech recognition is often lim-
ited by the difficulty in collecting such specialist data from im-
paired speakers. This paper presents a cross-domain acoustic-
to-articulatory (A2A) inversion approach that utilizes the paral-
lel acoustic-articulatory data of the 15-hour TORGO corpus in
model training before being cross-domain adapted to the 102.7-hour
UASpeech corpus and to produce articulatory features. Mixture
density networks based neural A2A inversion models were used. A
cross-domain feature adaptation network was also used to reduce
the acoustic mismatch between the TORGO and UASpeech data.
On both tasks, incorporating the A2A generated articulatory fea-
tures consistently outperformed the baseline hybrid DNN/TDNN,
CTC and Conformer based end-to-end systems constructed using
acoustic features only. The best multi-modal system incorporating
video modality and the cross-domain articulatory features as well as
data augmentation and learning hidden unit contributions (LHUC)
speaker adaptation produced the lowest published word error rate
(WER) of 24.82% on the 16 dysarthric speakers of the benchmark
UASpeech task.

Index Terms— Articulatory Inversion, Dysarthric Speech,
Speech Recognition, Domain Adaptation

1. INTRODUCTION
Speech disorders such as dysarthria are often associated with neuro-
motor conditions [1], including cerebral palsy [2], amyotrophic lat-
eral sclerosis [3], Parkinson disease [4], stroke or traumatic brain
injuries [5], leading to weakness or paralysis of muscles control-
ling articulation [6] and reduced intelligibility of speech for human
listeners. They affect millions of people around the world. Peo-
ple with speech impairment often experience co-occurring physi-
cal disabilities and mobility issue. Their difficulty in using key-
board, mouse and touch screen based user interfaces makes speech
controlled assistive technologies more natural alternatives [7], even
though speech quality is degraded. Despite the rapid progress of
automatic speech recognition (ASR) technologies in the past few
decades, recognition of disordered speech is still a very challenging
task to date due to severe mismatch against normal speech, difficulty
in large scale data collection for system development and high level
of variability among speakers [8–13].

Human speech production is a process that involves the coor-
dinated movements of various articulators such as the tongue, lips,
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teeth and palate. Articulatory movement features are inherently in-
variant to extrinsic acoustic distortion, for example, due to environ-
mental noise. They have been successfully applied to both normal
speech [14–19] and pathological speech [20–25] recognition tasks.

The practical and wider use of articulatory features in ASR
systems for both normal and disordered speech task domains is
often limited by the difficulty in collecting sufficient quantities
of such specialist data that are essential for current deep learning
technologies. In practice, recording detailed articulatory move-
ments and vocal tract shape normally requires the use of intrusive
electromagnetic articulography (EMA) [26] technologies or mag-
netic resonance imaging (MRI) [27]. In the context of articulatory
recordings from impaired speakers, the requirement of specialist
facilities is further compounded with their underlying neuro-motor
conditions, mobility issues and fatigue when speaking, leading to
increasing difficulty in articulatory data collection.

An alternative approach to obtain articulatory information is to
estimate it from the more accessible acoustic speech signals using
data driven artificial neural network based acoustic-to-articulatory
(A2A) inversion [25,28–31] techniques based on, for example, mul-
tilayer perceptron (MLP) [28] and mixture density network (MDN)
[30, 31]. As the A2A inversion model training only requires a part
of training materials to contain parallel acoustic-articulatory data,
the resulting inversion model can be used to produce articulatory
features when only audio recordings are available. A wider and
more practical application of articulatory feature representation in
ASR systems thus becomes possible. Prior researches on A2A in-
version were conducted predominantly on normal speech task do-
mains [28–31]. In contrast, very limited researches were carried out
on A2A inversion for disordered speech recognition [23, 25].

In order to address the issues mentioned above, this paper
presents a cross-domain A2A inversion approach that utilizes the
parallel acoustic-articulatory data of 15-hour TORGO corpus [32] in
model training before being cross-domain adapted to the 102.7-hour
UASpeech corpus [33] to produce articulatory features. Mixture
density networks based deep neural network A2A inversion models
were used. A cross-domain adaptation network was used to reduce
the acoustic mismatch between the TORGO and UASpeech data.
On both tasks, incorporating the generated articulatory features
consistently outperformed the baseline hybrid DNN/TDNN [34],
CTC [35] or Conformer [36] based end-to-end systems constructed
using acoustic features only.

The main contributions are summarized below. To the best of
our knowledge, this work is the first use of real acoustic-articulatory
parallel recordings trained A2A inversion models for articulatory
features generation targeting disordered speech recognition. In con-
trast, related previous works either used: a) synthesized normal

6747978-1-6654-0540-9/22/$31.00 ©2022 IEEE ICASSP 2022

IC
A

SS
P 

20
22

 - 
20

22
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

8-
1-

66
54

-0
54

0-
9/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

39
22

.2
02

2.
97

46
98

9

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:29:01 UTC from IEEE Xplore.  Restrictions apply. 



speech acoustic-articulatory features trained A2A inversion mod-
els before being applied to dysarthric speech [23], while the large
mismatch between normal and impaired speech encountered during
inversion model training and articulatory feature generation stages
was not taken into account; or b) only considered the cross-domain
or cross-corpus A2A inversion [25] while the quality of generated
articulatory features was not assessed using the back-end disordered
speech recognition systems. In addition, the lowest published WER
of 24.82% on the benchmark UASpeech task in comparison against
recent researches [8–13, 37–39] was obtained using the proposed
cross-domain acoustic-to-articulatory inversion approach.

The rest of the paper is organized as follows. The baseline ASR
systems and their incorporation of articulatory features are presented
in Section 2. Section 3 presents the cross-domain A2A inversion sys-
tems. Experimental results are shown in Section 4. The conclusions
are drawn and future works are discussed in Section 5.

2. ARTICULATORY FEATURE BASED DISORDERED
SPEECH RECOGNITION

This section describes the time delay neural network (TDNN) [34]
based ASR and acoustic-articulatory feature based speech recogni-
tion (AASR) system architecture on the TORGO dataset [32] which
provides parallel acoustic-articulatory data.

acoustic
features

articulatory
features

LDA projection

TDNN-F layer

TDNN-F layer

output layer

speaker-dependent
LHUC

160-dim

ReLU

Batch Normalization

Dropout

(c)
(d)

(a)
(b)

1536-dim

Fig. 1. The factored TDNN based ASR and AASR system archi-
tecture for the TORGO task. The AASR system uses the acoustic-
articulatory concatenation via connection (b). The connection (d) is
used for LHUC-SAT training for both ASR and AASR systems.

Both of the baseline ASR and AASR systems share the same
main structure based on a 7-layer factorized TDNN (TDNN-F)
model with a semi-orthogonal constraint and they were trained
using the sequence discriminative lattice-free MMI (LF-MMI) cri-
terion (see Figure 1). Linear discriminant analysis (LDA) based
affine projection was also applied to the input acoustic only for the
ASR system, or concatenated acoustic-articulatory features for the
AASR system. The following TDNN-F hidden layers positioned
after LDA projection are shown in the red dotted box in Figure 1.
Each TDNN-F layer contains a set of neural operations performed
in sequence immediately after the factorized hidden layers includ-
ing: rectified linear unit (ReLU) activation, batch normalization
and dropout modules. Each hidden layer’s inputs prior to context
splicing were scaled and added to its outputs by a skip connection.

To model the large variability among disordered speakers, learn-
ing hidden unit contributions (LHUC) [40] based speaker adaptive
training (SAT) was used (right part of Figure 1). Speaker-level
LHUC scaling factors (in red) are applied to the ReLU activation
outputs via connection (d). Supervised estimation of LHUC factors
is performed for each speaker during the training stage. During test

adaptation, unsupervised LHUC adaptation is used to re-estimate
the LHUC scaling factors based on the speaker specific data.

3. ACOUSTIC-TO-ARTICULATORY INVERSION
3.1. In-domain A2A Inversion
Data augmentation techniques play a vital role to address the data
sparsity problem in current disordered speech recognition systems
[37, 38]. Spectral-temporal perturbation of the limited audio data
collected from impaired speakers is normally used to inject more di-
versity into the augmented data to improve the resulting ASR system
generalization on the same task, for example, the TORGO corpus.
The construction of AASR systems using such augmented acous-
tic data requires an in-domain acoustic-to-articulatory (A2A) inver-
sion process to produce the desired articulatory features for the ex-
panded audio data. One of the commonly adopted neural network
based A2A inversion methods is based on mixture density networks
(MDNs) [30, 31]. This is also considered in this paper. Instead of
directly generating articulatory features, MDNs model the Gaussian
mixture model density distribution parameters that characterise the
articulatory movements. The MDN loss function is defined as

LMDN = −
∑
t

ln

M∑
m

Sm(yλ
t )N (at;µt,m,σ2

t,m) (1)

where M is the number of mixture components, at denotes ar-
ticulatory feature vector at the t-th frame, S and N denote the
Softmax activation and Gaussian distribution respectively, yλ

t rep-
resents the MDN network output fed into the Softmax activation
to produce the mixture component weights Sm(yλ

t ) at time t. The
t-th frame mixture component mean and variance parameters are
predicted using the respective MDN outputs as µt,m = yµ

t,m,
and σ2

t,m = exp2
(
yσ
t,m

)
. The articulatory movements directly

produced by MDNs usually contain artefacts. These can be fur-
ther smoothed using the maximum likelihood parameter generation
(MLPG) algorithm [41] performed on the articulatory trajectories
augmented with their differentials ∆ and ∆∆.

In this paper, a multi-task learning (MTL) approach was also
adopted to construct the A2A inversion system illustrated in the right
part of Figure 2, where the acoustic features were fed into the inver-
sion model using the connection (a). Two groups of tasks including:
a) an interpolation between the MDN error loss of Eqn. (1), MSE
and Pearson correlation computed against the ground truth articu-
latory features; and b) an auxiliary monophone classification task
based on phonetic alignments obtained from the HTK toolkit [42]
are combined in the following MTL cost function.
L = ω1LMDN + ω2LMSE + ω3LPearson︸ ︷︷ ︸

regression

+ ω4LCE︸ ︷︷ ︸
classification

(2)

where LMDN is calculated by Eqn. (1), LMSE and LPearson are
the MSE and negative Pearson correlation coefficient calculated us-
ing the inverted and target articulatory features respectively. LCE is
the monophone level cross entropy (CE) loss. In this paper, the task
weight parameters ω1, ω2, ω3, ω4 were set as the same weight 0.251.

3.2. Cross-domain A2A Inversion
Due to the acoustic domain mismatch, a direct cross-domain appli-
cation of the A2A inversion model (described in Section 3.1) trained
on the TORGO acoustic-articulatory parallel data to the UASpeech
acoustic data is problematic, as was shown in the previous research
on cross-domain audio-visual inversion [12]. To this end, the large

1Compared with using equal weights, alternative weighting by removing
the CE cost, increasing/decreasing the CE cost weight or removing one of the
other three costs all led to WER increase in the resulting AASR systems.
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acoustic domain mismatch between the two data sets can be mini-
mized using multi-level adaptive networks (MLAN) [12, 39, 43] be-
fore A2A inversion can be performed. An example MLAN model is
shown in the left part of Figure 2 (circled in red dotted line).
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Fig. 2. Cross-domain articulatory feature generation system archi-
tecture. The left part shows the MLAN cross domain feature adap-
tation network, while on the right is the multi-task trained MDN
based A2A inversion model. The inputs fed into the A2A inversion
model component are based on either: a) splicing windowed frames
of original acoustic features using connection (a) for in-domain A2A
inversion performed on TORGO acoustic data w/o data augmenta-
tion applied; or b) the MLAN adapted UASpeech bottleneck features
for cross-domain A2A inversion of the UASpeech acoustic data.

An example MLAN network consisting of two DNN compo-
nents is shown in the left portion of Figure 2. Each component
DNN contains a bottleneck layer positioned immediately before the
output layer. The MLAN training process includes the following
steps: 1) the first-level DNN was trained with the audio data from the
in-domain UASpeech corpus; 2) the resulting in-domain dysarthric
speech trained DNN was then used to produce bottleneck features
for the out-of-domain data of the TORGO audio; 3) the second-level
DNN was trained using the out-of-domain TORGO audio data con-
catenated with the bottleneck features computed from the previous
step. When feedforwarding the UASpeech data into the resulting
MLAN network, the combined effect produced by these two cas-
caded component DNNs is such that the final bottleneck features
produced at the second-level DNN component will exhibit smaller
mismatch against the bottleneck features obtained by feedforward-
ing the TORGO data into the MLAN network. These cross-domain
adapted bottleneck features are used in A2A inversion model train-
ing and articulatory feature generation (in the right part of Figure 2
using connection (b)) for the UASpeech audio data.

4. EXPERIMENTS
4.1. Experiments on the TORGO dataset
Task Description and Experimental Setup : The TORGO dataset
is a disordered speech corpus with acoustic-articulatory parallel
recordings and contains 8 dysarthric and 7 control speakers. In this
paper, 13.49-hour audio data was used, in which the total duration
of short sentence based utterances is 5.81 hours while that of single
word based utterances is 7.68 hours. The total number of speech
utterances is 16394. A speaker level data partitioning similar to that
used in the UASpeech [33] corpus is used. All 7 control speak-
ers’ data together with two thirds of the 8 dysarthric speakers’ data
were merged into the training set (11.7 hours) while the remaining
dysarthric speech served as the test data (1.79 hours). The percent-
age of spoken content overlap between the training and test data is

50%. Excessive silence at the sentence start and end was removed
using a HTK toolkit [42] trained GMM-HMM system. After silence
stripping, the training set contains 6.46 hours of data while the test
set has 1.02 hours of speech. After a combination of disordered
speaker independent and dependent speed perturbation [37] based
data augmentation, the total amount of training data was expanded
by a factor of 6 times and increased to 34.11 hours in total.

In our experiments, the 7-layer LF-MMI based TDNN-F model
as shown in Figure 1 was implemented using the Kaldi toolkit [44]
while Conformer based end-to-end systems2 were implemented us-
ing the Espnet toolkit [45]. A 3-frame context window was used
in both ASR and AASR hybrid LF-MMI trained TDNN systems.
40-dimension Mel-scale filter banks (FBKs) were used as the input
acoustic features, and the articulatory features were represented by
the measured articulatory trajectories. 6 trajectory variables (TV)
were selected as articulatory features, i.e. tongue tip (TT), tongue
middle (TM), tongue back (TB), upper lip (UL), lower lip (LL) and
lower incisor (LI). The X, Y and Z coordinates which capture the
spatial movement of the measured articulators were used to construct
18-dimension articulatory feature vectors before being concatenated
with FBK features. A 3-gram LM trained by all the TORGO tran-
scripts with a vocabulary size of 1578 words was used in decoding.

Table 1. Comparison of the WER results produced by various ASR
and AASR systems on the 8 TORGO dysarthric speakers test set.
The dysarthric speakers are grouped by their intelligibility levels,
i.e. “Severe”, “Moderate” and “Mild”. “Aug.” and “arti.” are the ab-
breviations of augmentation and articulatory respectively. AA fusion
includes different AA modality fusion: A) input feature concatena-
tion; AND B) score fusion. † and ‡ denote a statistically significant
improvement compared with baseline and augmented ASR systems
respectively (Sys. 1 and Sys. 6).

Sys. Model arti.
source

Data
Aug.

LHUC
SAT AA Fusion WER %

Severe Moderate Mild Average
1

TDNN

✗ ✗ ✗ ✗ 16.22 10.31 3.87 11.62
2 original ✗ ✗

input 15.00 9.59 4.18 10.93
3 score A+AA 13.98 9.39 3.79 10.25†

4 inversion ✗ ✗
input 15.61 10.10 3.79 11.24

5 score A+AA 14.67 9.80 3.41 10.59†

6

TDNN

✗ ✓ ✗ ✗ 12.80 8.78 3.64 9.47
7 original ✓ ✗

input 13.25 7.24 3.02 9.21
8 score A+AA 12.68 7.76 2.86 8.98
9 inversion ✓ ✗

input 12.72 7.45 3.41 9.09
10 score A+AA 12.28 7.96 2.86 8.81‡

11
TDNN

✗ ✓ ✓ ✗ 12.52 8.27 3.25 9.11
12 inversion ✓ ✓

input 12.52 7.14 3.17 8.85
13 score A+AA 12.03 7.35 2.94 8.58
14 Con-

former
✗ ✓ ✗ ✗ 22.28 7.35 4.72 14.39

15 inversion ✓ ✗ input 21.79 7.55 3.79 13.93

Results : The performance3 of various ASR and acoustic-articulatory
feature based AASR systems on the 8 TORGO dysarthric speakers
test set is shown in Table 1. Several trends can be found: 1) the
incorporation of the original articulatory features provided in the
TORGO data consistently outperform the acoustic only TDNN ASR
systems with or without data augmentation (Sys. 2 & 3 vs. Sys.
1; Sys. 7 & 8 vs. Sys. 6); among these, statistically significant
WERs reduction of 1.37% absolute (11.79% relative) and 1.03%
absolute (8.86% relative) were obtained over the baseline ASR sys-
tem using the AASR system Sys. 3 (original articulatory features)
and Sys. 5 (inverted articulatory features) respectively. The RMSE
of the MDN based A2A inversion system for inverted features in
Sys. 5 is 0.808mm. 2) further score fusion between the ASR and

28 encoder plus 4 decoder layers, feed-forward layer dim = 1024, atten-
tion heads = 4, dim of attention heads = 256, interpolated CTC+AED cost.

3A matched pairs sentence-segment word error based statistical signifi-
cance test was performed at a significance level α = 0.05
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AASR systems consistently outperforms the AASR systems using
the acoustic-articulatory feature concatenation at the input (Sys. 3
vs Sys. 2; Sys. 8 vs. Sys. 7). 3) The AASR systems trained using
A2A inverted features produced performance comparable to those
using the original articulatory features (Sys. 9 & 10 vs. Sys. 7
& 8) after data augmentation. 4) Consistent WER reductions over
the baseline ASR systems were obtained using the AASR systems
constructed using the A2A inverted articulatory features before and
after LHUC-SAT speaker adaptation (Sys. 10 vs. Sys. 6; Sys. 13
vs. Sys. 11). 5) Similar trends can also be found on the Conformer
based systems (Sys. 15 vs. Sys. 14). No score fusion was used on
Conformer due to no performance gain compared to TDNN systems.

4.2. Experiments on the UASpeech dataset
Task Description and Experimental Setup : The UASpeech cor-
pus is the largest publicly available disordered speech corpus that
is designed as an isolated word recognition task [33] consisting of
16 dysarthric and 13 control speakers. The speech materials contain
155 common words and 300 uncommon words. The entire corpus
is further divided into 3 subset blocks per speaker, with each block
containing all 155 common words and one third of the uncommon
words. The data from Block 1 (B1) and Block 3 (B3) of all the
29 speakers are used as the training set (69.1 hours of audio, 99195
utterances in total), while the data of Block 2 (B2) collected from
all the 16 dysarthric speakers serves as the evaluation data set (22.6
hours of audio, 26520 utterances in total). After removing excessive
silence at the start and end of speech audio segments, a combined
total of 30.6 hours of audio data from Block 1 and 3 were used as
the training set, while 9 hours of speech from Block 2 was used
for performance evaluation. After speaker independent and depen-
dent speed perturbation based data augmentation [37, 39], the total
amount of training data was increased to 130.1 hours in total.

Table 2. WERs of baseline ASR and AASR systems using the
cross-domain inverted articulatory features on the UASpeech test
set of 16 dysarthric speakers grouped by intelligibility levels: “Very
low”, “Low”, “Mild” and “High”. AA fusion includes different AA
modality fusion: A) input feature concatenation; B) hidden layer fu-
sion; AND C) score fusion. Optional further incorporation of video
modality is used. † denotes statistical significant differences ob-
tained against the baseline ASR systems (Sys. 1, 7, 12 & 14)

Sys. model AA Fusion Data
Aug.

LHUC
SAT MLAN WER %

Very Low Low Mild High Average
1

Hybird
DNN

✗
✗

✗

✗
69.82 32.61 24.53 10.40 31.45

2 7th hidden 69.41 33.01 24.52 10.35 31.46
3 ✓ 67.82† 31.25† 22.88† 9.77† 30.15†

4 ✗
✓

✗
66.84 28.70 20.39 9.37 28.67

5 7th hidden 66.43 30.26 22.13 9.63 29.41
6 ✓ 66.27 28.42 19.78 9.40 28.37
7 ✗

✓
✓

✗
64.22 27.87 18.01 7.60 26.85

8 7th hidden 62.40 27.81 18.64 8.69 26.93
9 ✓ 62.08† 26.23† 17.33 8.47 26.13†

10 score A+AA ✓ ✓ 61.22† 25.51† 16.15† 7.64 25.26†

11 +visual score A+AA ✓ ✓ 60.14 25.11 15.92 7.46 24.82
12 CTC ✗

✓
✗ ✓

78.25 53.18 46.56 34.09 50.79
13 input 74.33† 52.53 47.13 34.49 50.04†

14 Con-
former

✗
✓

68.22 49.38 47.51 41.77 50.44
15 input 67.42 48.53† 47.20 41.95 50.05

Results : Domain adaptation is essential in transferring articulatory
features from TORGO corpus to UASpeech dysarthric corpus (Sys.
3 vs. Sys. 2; Sys. 6 vs. Sys. 5; Sys. 9 vs. Sys. 8). After incor-
porating the corss-domain inverted articulatory features obtained on
the UASpeech audio data, the resulting AASR systems shown in Ta-
ble 2 consistently outperform the comparable baseline ASR systems
using acoustic feature only by a significant margin in WER (Sys. 3
vs. Sys. 1; Sys. 6 vs. Sys. 4; Sys. 9 vs. Sys. 7) before and after data
augmentation and LHUC-SAT based speaker adaptation applied to a
state-of-the-art hybird DNN system [39], a CTC end-to-end system
(Sys. 13 vs. Sys. 12) and a Conformer end-to-end system (Sys. 15

vs. Sys. 14). In particular, significant WER reductions of 1.64%-
2.14% were obtained on the “Very low” and “Low” subgroups after
data augmentation and LHUC-SAT (Sys. 9 vs. Sys. 7).

Further ablation studies were conducted to investigate alterna-
tive forms of acoustic-articulatory modality fusion. Table 2 shows
the performance of 130.1-hour augmented training data based
LHUC-SAT speaker adapted baseline acoustic feature only ASR
system (Sys. 7), and two acoustic-articulatory features based AASR
systems constructed using either a) 7-th hidden layer feature fusion
(Sys. 9), or b) score interpolation (Sys. 10, equal weighting to ASR
and AASR systems) based acoustic-articulatory modality fusion,
with an optional further incorporation of video modality (Sys. 11).

Score fusion between the ASR and AASR systems produced a
statistically significant WER reduction of 1.59% over the compara-
ble ASR system (Sys. 10 vs. Sys. 7) and 0.87% over the AASR sys-
tem using hidden layer feature fusion (Sys. 10 vs. Sys. 9), although
with increased system complexity. The lowest WER of 24.82% was
obtained by further incorporating visual features [39] (Sys. 11). To
the best of our knowledge, this is the lowest WER published so far
on the UASpeech test set of 16 dysarthric speakers reported in the
literature. Performance of this system against previously published
systems on the same task are shown in Table 3.
Table 3. A comparison between published systems on UASpeech
and our system. “DA” stands for data augmentation.

systems WER%
Sheffield-2013 Cross domain augmentation [8] 37.50

Sheffield-2015 Speaker adaptive training [9] 34.80
CUHK-2018 DNN System Combination [10] 30.60

Sheffield-2020 Fine-tuning CNN-TDNN speaker adaptation [11] 30.76
CUHK-2020 Cross-domain AVSR [12] 26.84

CUHK-2020 DNN + DA + LHUC SAT [37] 26.37
CUHK-2021 DNN + GAN based DA + LHUC SAT [38] 25.89

CUHK-2021 NAS DNN + DA + LHUC SAT + AV fusion [39] 25.21
DNN + DA + LHUC SAT + AAV fusion (ours) 24.82

5. CONCLUSION
This paper presents a cross-domain acoustic-to-articulatory (A2A)
inversion approach that utilizes small amounts of parallel acoustic-
articulatory data of the 15-hour TORGO corpus in model training
before being cross-domain adapted to a larger 102.7-hour UASpeech
dysarthric corpus to produce articulatory features for ASR system
construction incorporating articulatory features. Experimental re-
sults on both tasks suggest that incorporating the A2A generated
articulatory features consistently outperformed the baseline hybrid
DNN/TDNN, CTC and Conformer based end-to-end systems con-
structed using acoustic features only, while producing the lowest
published WER of 24.82% on the 16 dysarthric speakers of the
benchmark UASpeech task. The proposed cross-domain A2A inver-
sion method allows a more practical and wider use of articulatory
features in ASR systems targeting disordered speech.
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